10,734 research outputs found

    Quaternionic factorization of the Schroedinger operator and its applications to some first order systems of mathematical physics

    Full text link
    We consider the following first order systems of mathematical physics. 1.The Dirac equation with scalar potential. 2.The Dirac equation with electric potential. 3.The Dirac equation with pseudoscalar potential. 4.The system describing non-linear force free magnetic fields or Beltrami fields with nonconstant proportionality factor. 5.The Maxwell equations for slowly changing media. 6.The static Maxwell system. We show that all this variety of first order systems reduces to a single quaternionic equation the analysis of which in its turn reduces to the solution of a Schroedinger equation with biquaternionic potential. In some important situations the biquaternionic potential can be diagonalized and converted into scalar potentials

    On a factorization of second order elliptic operators and applications

    Full text link
    We show that given a nonvanishing particular solution of the equation (divpgrad+q)u=0 (1) the corresponding differential operator can be factorized into a product of two first order operators. The factorization allows us to reduce the equation (1) to a first order equation which in a two-dimensional case is the Vekua equation of a special form. Under quite general conditions on the coefficients p and q we obtain an algorithm which allows us to construct in explicit form the positive formal powers (solutions of the Vekua equation generalizing the usual powers of the variable z). This result means that under quite general conditions one can construct an infinite system of exact solutions of (1) explicitly, and moreover, at least when p and q are real valued this system will be complete in ker(divpgrad+q) in the sense that any solution of (1) in a simply connected domain can be represented as an infinite series of obtained exact solutions which converges uniformly on any compact subset of . Finally we give a similar factorization of the operator (divpgrad+q) in a multidimensional case and obtain a natural generalization of the Vekua equation which is related to second order operators in a similar way as its two-dimensional prototype does

    Magnetic-Field-Driven Superconductor-Insulator-Type Transition in Graphite

    Full text link
    A magnetic-field-driven transition from metallic- to semiconducting-type behavior in the basal-plane resistance takes place in highly oriented pyrolytic graphite at a field Hc1 H_c \sim 1~kOe applied along the hexagonal c-axis. The analysis of the data reveals a striking similarity between this transition and that measured in thin-film superconductors and Si MOSFET's. However, in contrast to those materials, the transition in graphite is observable at almost two orders of magnitude higher temperatures.Comment: 4 Figure

    Schreier Graphs for a Self-Similar Action of the Heisenberg Group

    No full text
    We construct a faithful self-similar action of the discrete Heisenberg group with the following properties: This action is self-replicating, finite-state, level-transitive, and noncontracting. Moreover, there exist orbital Schreier graphs of action on the boundary of the tree with different degrees of growth.Побудовано точну самоподiбну дію дискретної групи Гейзенберга з наступними властивостями. Дія є рекурентною, скінченностановою, сферично транзитивною, нестискуючою та існують графи Шрайєра дії групи на межі дерева з різними степенями зростання

    Coherent back-scattering near the two-dimensional metal-insulator transition

    Full text link
    We have studied corrections to conductivity due to the coherent backscattering in low-disordered two-dimensional electron systems in silicon for a range of electron densities including the vicinity of the metal-insulator transition, where the dramatic increase of the spin susceptibility has been observed earlier. We show that the corrections, which exist deeper in the metallic phase, weaken upon approaching to the transition and practically vanish at the critical density, thus suggesting that the localization is suppressed near and at the transition even in zero field.Comment: to appear in PR
    corecore